Some properties of the Fourier transform on semi-simple Lie groups. II
نویسندگان
چکیده
منابع مشابه
Representations of Complex Semi-simple Lie Groups and Lie Algebras
This article is an exposition of the 1967 paper by Parthasarathy, Ranga Rao, and Varadarajan, on irreducible admissible Harish-Chandra modules over complex semisimple Lie groups and Lie algebras. It was written in Winter 2012 to be part of a special collection organized to mark 10 years and 25 volumes of the series Texts and Readings in Mathematics (TRIM). Each article in this collection is int...
متن کاملRemarks on random walks on semi simple Lie groups
© Mémoires de la S. M. F., 1977, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملHarmonic Functions on Discrete Subgroups of Semi - Simple Lie Groups
A description of the Poisson boundary of random walks on discrete subgroups of semi-simple Lie groups in terms of geometric boundaries of the corresponding Riemannian symmetric spaces is given. Let G be a discrete group, and { a probability measure on G. A function f on G is called-harmonic if f(g) = P f(gx) (x) 8 g 2 G. The Poisson boundary of the pair (G;) is the probability space (?;) with a...
متن کاملTranslation-invariant Cones of Functions on Semi-simple Lie Groups
Introduction. Originally, the phrase harmonic analysis had a function-theoretic meaning, referring to the decomposition of a function into exponentials. In the current interpretation, particularly in connection with noncommutative groups, the term refers not to functions but to representations, and harmonic analysis is regarded as part of the theory of group representations. This shift in inter...
متن کاملOn Lie Semi-Groups
a subset of real Euclidean n-space, En, by (p, q) → F (p − q) = p ◦ q. In this note we shall be concerned with a representation T (.) of π as a semi-group of bounded linear operators on a Banach space X. More particularly, we suppose that postulates P1, P2, P3, P5, and P6 of chapter 25 of (2) are satisfied so that, by Theorem 25.3.1 of that book, there is a continuous function, f(.), defined on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1957
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1957-0083683-7